Deformed wing virus | |
---|---|
Virus classification | |
Group: | Group IV ((+)ssRNA) |
Order: | Picornavirales |
Family: | Iflaviridae |
Genus: | Iflavirus |
Species: | Deformed wing virus |
Deformed wing virus (DWV) is an RNA virus, one of 18 known viruses affecting the honey bee, Apis mellifera. The virus was first isolated from a sample of symptomatic honeybees from Japan in the early 1980s and is currently distributed worldwide.
Contents |
The viral genome was published in 2006.[1] The genome is 10140 nucleotides in length excluding the poly(A) tail and contains a single large open reading frame encoding a 328-kilo Dalton (kDA) polyprotein. 5' of the central coding sequence is a 1144-nucleotide nontranslated leader sequence (UTR). 3' coding sequence is a 317-nucleotide nontranslated region which is followed by a poly(A) tail.
The genome is 29.5% adenosine, 15.8% cytosine, 22.4% guanine and 32.3% uracil. Analysis of codon use found 39.5% uracil and 26.8% adenosine in the third base position.There are three major structural proteins - VP1 (44 kDa), VP2 (32 kDa), and VP3 (28 kDa). These lie in the N-terminal section of the polyprotein. The C-terminal part of the polyprotein contains sequence motifs typical of well-characterized picornavirus nonstructural proteins: an RNA helicase, a chymotrypsin-like 3C protease and an RNA-dependent RNA polymerase.
VP1 is encoded between codons 486 to 880 and VP3 lies between codons 913 and 1063. The boundaries of VP2 are not as well defined but it is encoded 5' of VP1. There may be a small protein (VP4) encoded between codons 464 and 486 but this protein has not been confirmed to be present in the genome.
Lying 5' to VP2 is a very variable leader peptide (L protein). Despite occupying 7.3% of the polyprotein it is responsible for 26.2% to 33.3% of the variation found between the Iflaviridae. It may be involved in the inhibition of host cap-dependent mRNA translation and stimulation of viral internal ribosome entry site activity.
VPg, a small protein (23 amino acids) common to many RNA viruses, is responsible for stabilizing the 5' end of the genomic RNA for replication and translation. A putative VPg is present between nucleotide positions 2093 and 2118 immediately 5' of the 3C protease. The protein itself has not yet been confirmed to be present in the viron.
The helicase domains A, B and C are found between codons 1460 and 1575. The 3C protease domains span codons 2183 to 2327. The usual eight RdRp domains are located between codons 2493 and 2828.
The genome structure is
5'UTR-L-VP2-(VP4)-VP1-VP3-RNA helicase-(VPg)-3C protease-RNA dependent RNA polymerase-3'UTR
The putative VP4 and VPg proteins are marked here by parentheses. If the VPg is present in the genome a copy will be bound to the 5' end of the RNA genome.
The viron is a 30-nm icosahedral particle consisting of the single positive-stranded RNA genome and three major structural proteins.
The virus is concentrated in the heads and abdomens of infected adult bees with significantly reduced titers in the thorax. The genome is detectable by reverse transcriptase-polymerase chain reaction in the head, thorax, abdomen and wings of infected bees. Only the legs are devoid of virus.
Deformed wing virus (DWV) is suspected of causing the wing and abdominal deformities often found on adult honeybees in colonies infested with Varroa mites. These symptoms include damaged appendages, particularly stubby, useless wings, shortened, rounded abdomens, miscoloring and paralysis. Symptomatic bees have severely reduced life-span (less than 48 hours usually) and are typically expelled from the hive. The symptoms are strongly correlated with elevated DWV titres, with reduced titres in asymptomatic bees from the same colonies. In the absence of mites the virus is thought to persist in the bee populations as a covert infection, transmitted orally between adults (nurse bees) since the virus can be detected in hypopharyngeal secretions (royal jelly) and broodfood and also vertically through the queen's ovaries and through drone sperm. The virus may replicate in the mite but this is not certain.
The severe symptoms of DWV infections appear to be associated with Varroa destructor infestation of the bee hive and studies have shown that Varroa destructor harbors greater levels of the virus than are found even in severely infected bees. Thus V. destructor may not only be a concentrating vector of the virus but may also act as a replicating incubator, magnifying and increasing its effects on the bees and on the hive. The combination of mites and DWV causes immunosuppression in the bees and increased susceptibility to other opportunistic pathogens and has been considered a significant factor in honey bee colony collapse disorder.
The virus may also be transmitted from queen to egg and in regurgitated food sources, but in the absence of V. destructor this does not typically result in large numbers of deformed bees.
The artificial infection of this virus is also reported to cause specific deficits in behavioural plasticity of honeybee. Honeybees are more sensitive to lowest stimuli and show impairment in their associative conditioning. Interestingly the non-associative learning remains intact. Thus DWV seems to interfere with molecular mechanism of learning that may include immune system and signalling pathways.
Another virus, the Kakugo virus, has an RNA sequence that is 98% similar to DWV. It is found only in the mushroom bodies of aggressive, guard honeybees. Bees that are significantly affected by DWV also have measurable titers of the virus in their heads while bees that are symptomless only produce titers in their abdomens or thoraxes. Some researchers have detected increased aggressiveness immediately before colony collapse, and suspect that the virus may play a role. Other researchers have dismissed this relationship.